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Abstract

A detailed theoretical analysis of the free induction decay (FID) and spin echo (SE) MR signal formation in the presence of

mesoscopic structure-specific magnetic field inhomogeneities is developed in the framework of the Gaussian phase distribution

approximation. The theory takes into account diffusion of nuclear spins in inhomogeneous magnetic fields created by arbitrarily

shaped magnetized objects with permeable boundaries. In the short-time limit the FID signal decays quadratically with time and

depends on the objects� geometry only through the volume fraction, whereas the SE signal decays as 5/2 power of time with the
coefficient depending on both the volume fraction of the magnetized objects and their surface-to-volume ratio. In the motional

narrowing regime, the FID and SE signals for objects of finite size decay mono-exponentially; a simple general expression is ob-

tained for the relaxation rate constant DR2. In the case of infinitely long cylinders in the motional narrowing regime the theory
predicts non-exponential signal decay ln S � �t ln t in accordance with previous results. For specific geometries of the objects
(spheres and infinitely long cylinders) exact analytical expressions for the FID and SE signals are given. The theory can be applied,

for instance, to biological systems where mesoscopic magnetic field inhomogeneities are induced by deoxygenated red blood cells,

capillary network, contrast agents, etc.
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1. Introduction

Magnetic field inhomogeneities are known to play a

significant role in the process of magnetic resonance

signal formation. Inhomogeneities of mesoscopic scale

(smaller than a voxel size but bigger than the atomic
scale) originating from internal, structure-specific sour-

ces could provide important information on biological

tissue structure and function. These mesoscopic inho-

mogeneities result from the differences in magnetic sus-

ceptibility within a biological system. Examples include

deoxygenated red blood cells, capillary network, con-

trast agents for MRI, and so on. Usually such systems

are described in the framework of a model, according to
which the magnetized objects (blood vessels, red blood

cells, etc.) occupying a volume fraction f with a mag-
netic susceptibility vi are embedded in a given media
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with a magnetic susceptibility ve. Nuclear spins in the
non-uniform magnetic field induced by these objects

precess with spatially dependent Larmor frequencies

and accumulate different phases, leading to signal decay.

Spin diffusion plays two major roles: on the one hand, it

smears phase differences; on the other hand it makes
impossible complete spin phase refocusing in spin echo

(SE) experiments. In the static dephasing (or slow mo-

tion) regime, after an RF excitation pulse, the MR sig-

nal decays due to phase differences faster than spins

average out their phases due to diffusion. In the mo-

tional narrowing (fast diffusion) regime, phase averaging

is the fastest process defining MR signal relaxation, and

the rate of the latter is inversely proportional to the
diffusion coefficient of the spins.

Substantial insights into understanding details of MR

signal formation in the presence of mesoscopic field in-

homogeneities came from Monte–Carlo simulation [1–5]

and analytical approaches that described MR signal in

limiting cases of slow motion and motional narrowing
erved.
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regimes [6–12]. A rather attractive approach has been
proposed by Kennan et al. [13] and further developed by

Stables et al. [14], where simple analytical equations

were suggested to describe MR signal in all regimes.

This approach was based on a Gaussian approximation

for the spin-phase distribution function and an addi-

tional assumption of a mono-exponentially decaying

frequency correlation function similar to that in the

Anderson–Weiss mean field theory [15]. Such a behavior
of the correlation function can be expected for diffusion

inside bounded volumes because a solution to the dif-

fusion equation in these cases can be represented as a

sum of eigenfunctions with discrete positive eigenvalues

and the dominant role of the smallest eigenvalue can

lead to a mono-exponential time dependence of the

correlation function. In the case of unrestricted diffu-

sion, the set of eigenvalues is continuous; hence, the
correlation function can be non-exponential. Indeed, if

magnetic field inhomogeneities are created by magne-

tized spheres embedded in a homogeneous medium,

Jensen and Chandra [10] demonstrated that the corre-

lation function time dependence is not exponential but

algebraic. In the present paper, we calculate the fre-

quency correlation function for objects of arbitrary ge-

ometry and apply it to develop a Gaussian-based theory
of MR signal formation.

The Gaussian approach was first proposed by Dou-

glass and McCall [16] for an analysis of MR signal in the

presence of a constant field gradient for the case of

unrestricted diffusion when it represents an exact solu-

tion to the problem. If diffusion is restricted by some

barriers or if the field gradients are non-uniform (as in

the case of susceptibility-induced field inhomogeneities),
the phase distribution function is, in general, not

Gaussian. An adequateness of the Gaussian approxi-

mation was discussed by many authors (see, e.g. [17–

20]). A detailed quantitative comparison of the Gaussian

approximation with exact results obtained in the

framework of the random walk approach for some

models of restricted diffusion in the presence of a con-

stant field gradient was given in [21] for a broad range of
the system parameters. It was demonstrated that for a

SE signal this approximation is adequate for the de-

scription of MR signals corresponding to arbitrary

system parameters—the maximum discrepancy between

an exact SE signal and that from the Gaussian ap-

proximation does not exceed several percent while the

signal decays to 1/e of its initial value. For the free in-

duction decay (FID) signal, the Gaussian approxima-
tion is shown to be an adequate in the motional

narrowing regime and for short times. In the problem of

susceptibility-induced magnetic inhomogeneities, we can

also expect that the Gaussian approach will be adequate

under the same conditions.

In the present paper, the Gaussian approximation is

applied to analysis of the FID and SE signals in the
model with magnetized objects of arbitrary geometry.
We consider that: (A) the volume fraction occupied by

the objects is small; and (B) diffusion is unrestricted and

spins freely penetrate inside the objects, where they

diffuse with the same diffusion coefficient as outside.

Systems containing objects with impermeable bound-

aries will be discussed separately.

In what follows, we will obtain rather simple ex-

pressions describing the FID and SE signals in the
presence of uniformly distributed and uniformly ori-

ented magnetized objects of arbitrary geometry. In

particular, we will show that a mean value of x2

(x ¼ cHðrÞ) is the Larmor frequency in the rotating
frame, HðrÞ is the local inhomogeneous magnetic field
induced by magnetized objects, and c is the gyromag-
netic ratio) does not depend on objects� geometry but is
determined only by the volume fraction f and a sus-
ceptibility difference Dv ¼ vi � ve:

hx2i ¼ 4fðdxsÞ2

45
; ð1Þ

where dxs ¼ 4p � Dv � c � H0, and H0 is the external

magnetic field. The short-time behavior of the FID

signal is also independent of objects� geometry

SFIDðtÞ ’ S0 � exp
"
� 2fðdxsÞ2

45
t2
#
; ð2Þ

where S0 describes the signal in the absence of the
magnetic inhomogeneities. The SE short-time behavior

depends on the objects� volume fraction and also on their
geometry through the surface-to-volume ratio s0=v0,

SSEðtÞ ’ S0 � exp
"
� 8ð

ffiffiffi
2

p
� 1ÞfðdxsÞ2

675

s0
v0

2D
p

� �1=2
t5=2
#
:

ð3Þ
We note the unusual t5=2 time dependence of the SE
signal instead of the t3 dependence in the case of im-
penetrable objects. The long-time asymptotic behavior

of the FID and SE signals in the motional narrowing

regime is mono-exponential and can be described by a

standard DR2 (or DR�
2 for FID) relaxation rate

DR2 ’ DR�
2 ’

fðdxsÞ2

45pDv0
�
Z Z

v0

dr1 dr2

jr1 � r2j
; ð4Þ

where integration is only over one object�s volume,
provided that the integral in (4) exists. An important

exception when the integral in Eq. (4) does not exist is

the case of infinitely long cylinders; in this case, the

signal decays non-mono-exponentially (see Eq. (42)).
2. General approach

In the general case, the MR signal produced by a

system of a large number of spins, freely diffusing and
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precessing in magnetic field, at time t after an RF pulse
is

SðtÞ ¼ S0 � sðtÞ; sðtÞ ¼ hexp½iuðtÞ�i; ð5Þ
where the factor S0 describes the signal in the absence of
magnetic field inhomogeneities and uðtÞ is the phase
accumulated by a single spin moving along a given

trajectory r ¼ rðtÞ by time t

uðtÞ ¼
Z t

0

dt0xðrðt0ÞÞ: ð6Þ

In Eq. (6) the Larmor frequency xðrðtÞÞ ¼ cHðrðtÞÞ,
where HðrðtÞÞ includes the magnetic field created by all
magnetized objects on a spin trajectory rðtÞ. The angular
brackets in Eq. (5) mean averaging over all possible

initial positions and trajectories of the diffusing spins.
Additionally, if magnetic field inhomogeneities are in-

duced by uniformly distributed and uniformly oriented

magnetized objects, h� � �i includes also averaging over
possible positions and orientations of the objects. Thus,

h� � �i � h� � �idiffusionþpositionþorientation: ð7Þ

Introducing a phase distribution function P ðu; tÞ, the
signal in Eq. (5) can be written as

sðtÞ ¼
Z 1

�1
duPðu; tÞ expðiuÞ ð8Þ

(hereafter the function sðtÞ will be referred to as the
‘‘signal’’). In the Gaussian approximation

P ðu; tÞ ¼ 1

ð2phu2ðtÞiÞ1=2
exp

�
� u2

2hu2ðtÞi

�
: ð9Þ

Without loss of generality, we consider hui ¼ 0. In
this case, the signal can be reduced to

sðtÞ ¼ exp
�
� 1
2
hu2ðtÞi

�
: ð10Þ

Averaging u2ðtÞ rather than the exponent expðiuÞ in Eq.
(5) is required in this approach, that is a substantially

less challenging problem.

In the framework of the Gaussian approximation, the

FID signal (experiment with a single broadband 90� RF
pulse followed by a readout period t) and the SE signal
(experiment with 90�� t=2–180�� t=2 RF pulses) can
be written from Eq. (10) in the form:

sðtÞ ¼ exp½�CðtÞ�; CFIDðtÞ ¼
Z t

0

dt1

Z t1

0

dt2Gðt1; t2Þ;

CSEðtÞ ¼
Z t

0

dt1

Z t1

0

dt2

"
� 2 �

Z t

t=2
dt1

Z t=2

0

dt2

#
Gðt1; t2Þ;

ð11Þ
where Gðt1; t2Þ is the frequency correlation function,
Gðt1; t2Þ ¼ hxðt1Þxðt2Þidiffusionþpositionþorientation: ð12Þ
In what follows, the function CðtÞ will be referred to as
the signal attenuation function.
Diffusion averaging in Eq. (12) over all possible spin
trajectories and initial positions can be done in a stan-

dard manner by introducing an initial spin distribution

qðr0Þ and the propagator Pðr1; r2; tÞ defining the proba-
bility for a spin to diffuse from a point r2 to a point r1
during time t

hxðt1Þxðt2Þidiffusion ¼
Z Z Z

dr0 dr1 dr2qðr0Þxðr1Þxðr2Þ

� P ðr2; r0; t2ÞP ðr1; r2; t1 � t2Þ; ð13Þ

where the integration is over a system volume V . The
propagator P ðr1; r2; tÞ satisfies the diffusion equation
oP=ot ¼ D � r2P ð14Þ
with the initial condition P ðr1; r2; 0Þ ¼ dðr1 � r2Þ. For
unrestricted diffusion (as assumed throughout this work)

the solution to this equation is well-known

P ðr1; r2; tÞ ¼
1

ð4pDtÞ3=2
exp

"
� ðr1 � r2Þ2

4Dt

#
: ð15Þ

In the case of a uniform initial spin distribution,
qðr0Þ ¼ 1=V , the correlation function G turns out to be a
function of the time difference t ¼ t1 � t2 only:

GðtÞ ¼ 1

V

Z Z
dr1 dr2xðr1Þx

	
� ðr2ÞP ðr1; r2; tÞ



positionþorientation

; ð16Þ

and Eqs. (11) for the signal attenuation function CðtÞ
can be simplified as

CFIDðtÞ ¼
Z t

0

dsðt � sÞGðsÞ;

CSEðtÞ ¼
Z t

0

dsðt � sÞ½Gðs=2Þ � GðsÞ�:
ð17Þ

As shown in Appendix A, averaging over positions

and orientations of the magnetized objects results in the

following expression for the correlation function:

GðtÞ¼G0
v0

�
Z Z

v0

dr1 dr2P ðr1;r2;tÞ

¼ G0
v0ð4pDtÞ3=2

�
Z Z

v0

dr1 dr2 exp

"
�ðr1�r2Þ2

4Dt

#
; ð18Þ

where an integration is over a single object�s volume
only. The factor G0 is

G0 ¼ Gð0Þ ¼ 4fðdxsÞ2

45
: ð19Þ

It is important to emphasize that Eq. (18), in spite of

its simple form, takes into account the real distribution

of the inhomogeneous magnetic field created by the

objects of arbitrary geometry. This fact substantially

facilitates the problem of calculating the correlation
function because explicit analytical expressions for the
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local magnetic field hðrÞ (or its Fourier transformation)
are available only for some simplest object geometries.

Besides, even in a comparably simple case of ellipsoids

of revolution, the expression for hðrÞ is rather cumber-
some [22].

It should be noted that, according to Eq. (16), the

quantity Gð0Þ is equal to hx2i and the result (19) means
that the average value of the square of the Larmor fre-

quency given in Eq. (1) is determined only by the volume
fraction f and the susceptibility difference Dv and is in-
dependent of the geometry of the objects.

Substituting Eq. (18) in Eqs. (17), we obtain for the

signal attenuation function CðtÞ:

CðtÞ ¼ fðdxsÞ2

180D2pv0
�
Z Z

v0

dr1 dr2jrj � U
Dt
r2

� �
; ð20Þ

where r ¼ jrj ¼ jr1 � r2j and the function UðxÞ is given
by

UFIDðxÞ ¼ 2ð2xþ 1Þ~UU
1

2x1=2

� �
� 4 x

p

� �1=2
exp

�
� 1

4x

�
;

USEðxÞ ¼ 2 4ðx
"

þ 1Þ~UU 1

ð2xÞ1=2

 !
� ð2xþ 1Þ~UU 1

2x1=2

� �#

þ 4 x
p

� �1=2
exp

��
� 1

4x

�
� 23=2 exp

�
� 1

2x

��
:

ð21Þ

Here ~UUðxÞ ¼ 1� UðxÞ, UðxÞ, and ~UUðxÞ are the error
function and complementary error function [23], re-

spectively. For large x, x � 1, both the functions UFIDðxÞ
and USEðxÞ are linear in x,

UFIDðxÞ ’ USEðxÞ ’ 4x: ð22Þ
For small arguments, both of the functions tend to

zero non-analytically: UFID;SEðxÞ � x3=2 expð�1=4xÞ.

2.1. Long-time limit

In the long-time limit, when t � tD, tD ¼ R2=D is the
characteristic time for diffusion over a characteristic size

of the object R, the integrand in Eq. (18) is about 1 for
any r1 and r2, and for the correlation function GðsÞ we
obtain an asymptotic expression

GðtÞ ’ G0
v0

ð4pDtÞ3=2
� t�3=2; t � tD: ð23Þ

Note that Eq. (23) is valid only for finite objects; if

one of the object�s dimensions is infinite then this as-
ymptotic behavior becomes inadequate. For example,

for infinitely long cylinders, for an arbitrary long time t,
there are some coordinates r1 and r2 in the integral in

Eq. (18), for which the parameter ðr1 � r2Þ2=Dt is not
small. In this case, however, one can easily perform the

integration over the cylinder axis and obtain the result

characteristic to two-dimensional diffusion
GðtÞ ’ G0
R2

4Dt
� t�1; t � tD; ð24Þ

where R is the cylinder radius. This result should be

expected because the magnetic field created by an infi-

nite cylinder is homogeneous along its axis and therefore

spin diffusion in such a field can be treated as two-
dimensional.

In the limit t � tD, the argument x ¼ Dt=r2 of the
function UðxÞ in Eq. (20) is large for any r1 and r2, and
the functions UFIDðxÞ and USEðxÞ in Eq. (20) can be
substituted by their asymptotic expressions (22). As ex-

pected, in this case we obtain a mono-exponential be-

havior of the signal

sFIDðtÞ ¼ exp
�
� DR�

2 � t
�
; sSEðtÞ ¼ expð�DR2 � tÞ;

ð25Þ
where DR2, DR�

2 are given in Eq. (4).

This equation is valid for objects of arbitrary geom-

etry, provided that the integral in Eq. (4) exists. One can
draw an analogy between the integral in Eq. (4) and that

appearing in the calculation of the Coulomb (electro-

static) self-energy W of a charged object with a uniform

unit charge density,

W ¼ 1
2

Z Z
v0

dr1 dr2

jr1 � r2j
: ð26Þ

Such an analogy allows calculation of the integral in Eq.

(4) by means of numerous powerful methods developed
in electrostatics. Note that the integral in Eq. (4) di-

verges if one of the object�s dimensions tends to infinity.
In particular, Eq. (4) cannot be applied for an infinite

cylinder, for which a time dependence of the attenuation

function in the long-time limit is not linear in t but
contains logarithmic terms (see below).

2.2. Short-time limit

At t ! 0, the propagator Pðr1; r2; tÞ in Eq. (18) can be
substituted by its initial value Pðr1; r2; 0Þ ¼ dðr1 � r2Þ,
and the correlation function tends to Gð0Þ. However, the
next term in t cannot be obtained by a standard ex-
pansion of the propagator P ðr1; r2; tÞ as a series in t due
to its non-analytical time dependence. As shown in

Appendix B, the short-time behavior of the correlation
function is

GðtÞ ’ Gð0Þ � 1
"

� s0
v0

Dt
p

� �1=2#
þ oðt1=2Þ; ð27Þ

where s0 is the surface area of the object.
Opposite to the long-time limit, in the short-time

limit the small-x asymptotic form of the function UðxÞ
cannot be used because for an arbitrary small t, there are
some coordinates r1 and r2, for which the argument

x ¼ Dt=ðr1 � r2Þ2 is not small. In this case, however, we
can use the short-time expansion of the correlation
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function GðtÞ (27). Substituting Eq. (27) in Eq. (17), we
obtain for the signal attenuation functions CðtÞ:

CFIDðtÞ’
2fðdxsÞ2

45
t2 1

"
� 8

15

s0
v0

Dt
p

� �1=2#
þoðt5=2Þ; ð28Þ

CSEðtÞ’
8ð

ffiffiffi
2

p
�1ÞfðdxsÞ2

675

s0
v0

2D
p

� �1=2
t5=2þoðt5=2Þ: ð29Þ

It is worth noting that the leading t2-term in the FID
signal is universal: it depends on objects� geometry only
through their volume fraction f and is independent of
their shape. The absence of the diffusion coefficient in

the t2-term shows that it originates from static dephas-

ing processes (taking the delta-function rather than the

time-dependent propagator P ðr1; r2; tÞ means neglecting
diffusion).

The presence of the surface area s0 in Eq. (29) man-
ifests that the objects� shape and not just their volume
fraction plays a crucial role in formation of the SE signal
in the short-time interval. The physical origin of the t5=2

time dependence can be explained as follows. On an

object�s surface the induced local magnetic field hðrÞ is
discontinuous and the Larmor frequency has a ‘‘jump’’

Dx (its value varies along the object�s surface). At very
short times, the main contribution to the SE signal

change (proportional to ðDuÞ2) comes from the spins

crossing the objects� surface because only they experi-
ence an irreversible phase change Du � Dx � t. To cross
the surface during the time t, a spin must be located in
the vicinity of the surface at the characteristic diffusion

distance ðDtÞ1=2. Thus, multiplying ðDuÞ2 (proportional
to t2) by the number of spins crossing the surface (pro-
portional to ðDt1=2s0=v0Þ, we obtain the dependence

CSE � ðs0=v0ÞD1=2t5=2 presented in Eq. (29). If there is no
discontinuity in the Larmor frequency, the term pro-
portional to t5=2 in the SE signal attenuation at short
times is expected to be absent and the usual t3-depen-
dence for diffusion in the presence of field gradients

should be anticipated [24,25].
3. Specific geometrical models

In this section we apply the general expressions

obtained above to several shapes of the magnetized

objects: spheres, infinitely long cylinders, and ellipsoids

of revolution.

3.1. Spheres

The model of magnetized spheres was first studied in
[26], where the correlation function has been found; the

relaxation rate DR2 in the long-time limit in this model
has been found by Jensen and Chandra [10]. We will

make the next step in this direction and obtain an explicit

expression for the FID and SE signals in the spherical
model. For a sphere of radius R, the integral (18) can be
calculated giving the correlation function GðtÞ:

GðtÞ ¼ G0Qs
R2

Dt

� �
;

QsðxÞ ¼
1

p1=2x3=2
½ðx� 2Þe�x þ 2� 3x� þ Uðx1=2Þ;

ð30Þ

where UðxÞ is the error function. In such a form, the
correlation function has been obtained in [10] (with

different notations). The short- and long-time behaviors

of the correlation function (30) is

GðtÞ ’ G0 �
1� 3

R
Dt
p

� �1=2
; t � tD;

R3

6p1=2ðDtÞ3=2
; t � tD;

(
ð31Þ

where tD ¼ R2=D is the characteristic diffusion time. Eq.
(31) is in agreement with the general expressions (23)

and (27) (for spheres, the surface-to-volume ratio is

s0=v0 ¼ 3=R).
Making use of the correlation function (30) and Eqs.

(17), an exact analytical expression for the signal at-

tenuation function CðtÞ can be found

CFIDðtÞ ¼
G0t2D
70

� 35s2Uðs�1=2Þ
�

þ 8

p1=2
s5=2ð2s � 7Þ

þ 4ðs þ 3Þ~UUðs�1=2Þ � 2 s
p

� �1=2
� e�1=sð6þ 11s � 20s2 þ 8s3Þ

�
; ð32Þ

CSEðtÞ ¼
G0t2D
35

� 4ð7s
(

þ 6Þ~UU ð2=sÞ1=2
� �

� 2ð7s þ 3Þ

� ~UU s�1=2
� �

þ 2
ffiffiffi
2

p

p1=2
s5=2 7ð

ffiffiffi
2

ph
� 1Þ þ sð1� 2

ffiffiffi
2

p
Þ
i

þ 35
2

s2 U ð2=sÞ1=2
� �h

� U s�1=2
� �i

� s
p

� �1=2
�

ffiffiffi
2

p
e�2=sð12

h
þ 11s � 10s2 þ 2s3Þ

� e�1=sð6þ 11s � 20s2 þ 8s3Þ
i)

; ð33Þ

where s ¼ t=tD. The time dependence of the signal at-
tenuation functions CFID and CSE is shown in Fig. 1
(solid lines).
The short-time expansion of Eqs. (32) and (33) gives

CðtÞ ’ 2fðdxsÞ2

45

�
t2 1� 8

5p1=2
Dt
R2

� �1=2 þ 16
35p1=2

Dt
R2

� �3=2h i
; FID;

4
5p1=2

Dt
R2

� �5=2 ð2�
ffiffiffi
2

p
Þ � ð4�

ffiffi
2

p
Þ

7
Dt
R2

� �h i
; SE;

8><>:
t � tD: ð34Þ

Note that the next terms in the short-time expansion of

CðtÞ are non-analytical but proportional to expð�tD=tÞ.



Fig. 1. The attenuation function CðtÞ (C � � lnðS=S0Þ, where S is the
signal) for the FID and SE signals in the spherical model, normalized

to C0 ¼ G0t2D ¼ 4=45 � f � ðdxsÞ2 � ðR2=DÞ2, as a function of the di-
mensionless time s ¼ t=tD. Solid lines correspond to the exact (within
the Gaussian approach) expressions (32) and (33), dashed lines cor-

respond to approximation (36).
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The first two terms in CFID and the first term in CSE are
in agreement with the general expressions (28) and (29).
In the long-time limit ðt � tDÞ, the attenuation function
is linear in t with the relaxation rate

DR2 ¼
8fðdxsÞ2R2
225D

: ð35Þ

The same result can be easily obtained from electrostatic

analogy (26). Indeed, in the case of spherical objects
with radius R, the Coulomb energy is W ¼ 16p2R5=15,
which immediately leads to Eq. (35).

This result for DR2 coincides with that obtained in
[10] (different notations are used) by means of calcula-

tion of the correlation function on the basis of an ex-

plicit expression for a magnetic field induced by spheres.

As shown in [27] and reiterated in [28], DR2 given in Eq.
(35) differs by a numerical factor 10/9 from that ob-
tained in the framework of the outer sphere model. This

is because in the latter model the spheres are supposed

to be impenetrable for diffusing spins, whereas in [10]

and in the model presented here unrestricted diffusion is

assumed.

Note that the rather cumbersome results in Eqs. (32)

and (33) for the signal attenuation functions can be

approximated by relatively simple expressions:

CFIDðtÞ ’
2G0t2D
25

ð1
h

þ 5sÞ1=2 � 1
i2
;

CSEðtÞ ’
2G0t2D
25

4 ð1
h�

þ 5s=2Þ1=2 � 1
i2

� ð1
h

þ 5sÞ1=2 � 1
i2�

:

ð36Þ
The approximations (36) are shown in Fig. 1 by da-
shed lines.
3.2. Infinitely long cylinders

For a infinitely long cylinder of radius R with the axis
oriented along the Cartesian axis z, the integration limits
in Eq. (18) are given by the inequality x2 þ y26R2,
leading to the correlation function

GðtÞ ¼ G0Qc
R2

Dt

� �
;

QcðxÞ ¼ 1� e�x=2 I0
x
2

� �h
þ I1

x
2

� �i
;

ð37Þ

where I0ðxÞ and I1ðxÞ are the modified Bessel functions of
zero and first order.

The short- and long-time behaviors of the correlation
function (37) is

GðtÞ ’ G0 �
1� 2

R
Dt
p

� �1=2
; t � tD;

R2

4Dt ; t � tD:

(
ð38Þ

In the short-time limit, Eq. (38) is in agreement with

the general expressions (27) (for cylinder, the surface-

to-volume ratio is s0=v0 ¼ 2=R), whereas in the long-
time limit the correlation function coincides with

Eq. (24).

Making use of the correlation function (37) and Eqs.
(17), an exact analytical expressions for the signal at-

tenuation function CðtÞ can be found:

CFIDðtÞ ¼ G0t2D � 5

768s 3
F3 1; 1;

7

2

� �
; f3; 4; 5g;

��
� 1

s

�

þ s ln s
4

þ C1s þ
ln s
16

þ C2

�
; ð39Þ

CSEðtÞ ¼ G0t2D � 5

768s
8 � 3F3 1; 1;

7

2

� �
; f3; 4; 5g;

���
� 2

s

�

� 3F3 1; 1;
7

2

� �
; f3; 4; 5g;

�
� 1

s

��

þ s ln s
4

þ C3s þ
3 ln s
16

þ C4

�
: ð40Þ

Here 3F3ð� � �Þ is the generalized hypergeometric function
[23], the numerical constant C1 ¼ ð4 ln 2� 1� 2CÞ=8 �
0:077, C2 ¼ ð5þ 6 ln 2� 3CÞ=48 � 0:155, C3 ¼ �ð1þ
2CÞ=8 � �0:269 , C4 ¼ ð5þ 2 ln 2� 3CÞ=16 � 0:291,
and C � 0:577 is the Euler constant. The time depen-
dence of the functions CFID (39) and CSE (40) are shown
in Figs. 2a and b (solid lines).

In the short-time limit, t � tD, the signal attenuation
function CðtÞ reduces to



Fig. 2. The attenuation function CðtÞ for the FID signal (a) and SE

signal (b) in the cylindrical model, normalized to C0 ¼ G0t2D ¼ 4=45 �
f � ðdxsÞ2 � ðR2=DÞ2, as a function of the dimensionless time s ¼ t=tD.
Solid lines correspond to the exact formulas (39) and (40); circles

correspond to the short-time approximation (41); triangles correspond

to the long-time approximation (42).
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CðtÞ ’ 2fðdxsÞ2

45

�
t2 1� 16

5p1=2
Dt
R2

� �1=2 þ 4
35p1=2

Dt
R2

� �3=2h i
; FID;

1
5p1=2

Dt
R2

� �5=2 8ð2�
ffiffi
2

p
Þ

3
� ð4�

ffiffi
2

p
Þ

7
Dt
R2

� �h i
; SE;

8><>:
t � tD: ð41Þ

The first two terms inCFID and the first term inCSE are
in agreement with the general expressions (28) and (29).

It can be shown that for s > 1 the hypergeometric
functions in Eqs. (39) and (40) are approximately equal

to 1 and the attenuation functions CðtÞ are well de-
scribed by simple expressions

CFIDðtÞ ’ G0t2D � s ln s
4

�
þ C1s þ

ln s
16

þ C2 þ
5

768s

�
;

CSEðtÞ ’ G0t2D � s ln s
4

�
þ C3s þ

3 ln s
16

þ C4 þ
35

768s

�
:

ð42Þ
Aside from notation differences, the first four terms in
Eq. (42) coincides with the asymptotic behavior of CðtÞ
in the motional narrowing regime ðt � tDÞ obtained for
the cylindrical model by Kiselev and Posse [7]. However,

in the interval s < 3 the last term gives a substantial

contribution to C.
The long-time approximations (42) (triangles) as well

the short-time expressions (41) (circles) are shown in

Figs. 2a and b. Although the short-time approximations
(41) are obtained in the limiting case t � tD, in fact, Eq.
(41) is valid in a rather broad range: the function CðtÞ
can be accurately described by the short-time expres-

sions in the interval at t < 3:4tD for the FID signal and

t < 2:7tD for the SE signal with an error not exceeding
10% at the upper end of the intervals. The long-time

expressions (42) are also valid not only for t � tD: Eq.
(42) approximate the signal in the intervals t > 0:3tD for
the FID signal and t > 0:9tD for the SE signal with an
error not exceeding 10% at the lower end of the intervals.

3.3. Ellipsoids of revolution

An ellipsoid of revolution can be obtained by rotating

an ellipse about one of its axes. For an ellipse with the

half-axes a and b and with the symmetry axis (let it be b)
parallel to the Cartesian axis z, the integration limits in
Eq. (18) are given by the inequality

x2 þ y2

a2
þ z2

b2
6 1: ð43Þ

Evaluating the integral in Eq. (18) in these limits, the

correlation function GðtÞ in case of spheroidal objects
can be written in the form:

GðtÞ ¼ 6G0
p

�
Z 1

0

u du
Z 1

0

dv exp
�
� tu2

ta
� tv2

tb

�
� ðsin ~qq� ~qq cos ~qqÞ2

~qq6
; ~qq ¼ ðu2 þ v2Þ1=2; ð44Þ

where ta ¼ a2=D and tb ¼ b2=D are the characteristic
diffusion times. In the limiting case of spheres, a ¼ b, the
integral in Eq. (44) can be evaluated analytically and the

correlation function reduces to Eq. (30).

In the short-time limit, when t is much smaller than
both the characteristic diffusion times, t � ta; t � tb, the
correlation function and FID and SE signals are de-

scribed by the general expression (27)–(29) with the

surface-to-volume ratio

s0
v0

¼ 3

2b
1

�
þ b
ae
arcsin e

�
;

e ¼ 1

�
� a2

b2

�1=2
; a < b ðprolate spheroidÞ;

s0
v0

¼ 3

2b
1

�
þ b2

2a2e1
ln
1þ e1
1� e1

�
;

e1 ¼ 1

�
� b2

a2

�1=2
; a > b ðoblate spheroidÞ:

ð45Þ



Fig. 3. The function LðjÞ (50) describing the dependence of the re-
laxation rate constant DR2 in the ellipsoidal model on the aspect ratio
j ¼ a=b for a fixed particle volume v0 The maximum at j ¼ 1 corre-
sponds to spheres.
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In the long-time limit, when t is much longer than the
characteristic times, t � ta, t � tb, only small values of u
and v contribute to the integral (44), and the correlation
function takes the form

GðtÞ ’ G0
6p1=2

a2b

ðDtÞ3=2
� t�3=2: ð46Þ

If the half-axes of the spheroid are substantially dif-

ferent, for example, b � a (long ‘‘cigar’’ geometry),

there is an intermediate time regime ta � t � tb where
the correlation function can be approximated by an

expression similar to that for the model of cylinders

GðtÞ ’ G0
5

a2

Dt
� t�1: ð47Þ

As for cylinders, in this time interval diffusion can be

effectively considered as two-dimensional because dif-

fusion along the long spheroid axis does not affect the

correlation function (the magnetic field induced by a

‘‘cigar’’ is practically uniform along its long axis). In the

opposite case, b � a (thin ‘‘pancake’’ geometry), there is
an intermediate time regime when tb � t � ta where the
correlation function can be approximated by

GðtÞ ’ 3G0
4p1=2

b

ðDtÞ1=2
� t�1=2: ð48Þ

It is easy to see that such a correlation function effec-
tively corresponds to one-dimensional diffusion along

the normal to the ‘‘pancake.’’

Using Eq. (44), the FID and SE signal attenuation

functions for the spheroidal model can be written in the

form

CðtÞ ¼ 24fðdxsÞ2

45p
�
Z 1

0

u du
Z 1

0

dv

�
sin ~qq� ~qq cos ~qq
� �2

~qq6
� g u2

ta

�
þ v2

tb
; t
�

ð49Þ

where gðx; tÞ is given by Eq. (A.19).
In the short-time limit, the attenuation function is

described by the general expressions (28) and (29). To

calculate the relaxation rate DR2 (or DR�
2) in the long-

time limit t � ta; tb, it is more convenient to use not the
general expression (4) but Eq. (49). In this limit,

gðx; tÞ ’ t=x for both the FID and SE signals, and

CðtÞ ’ R2 � t, where

DR2 ¼
8fðdxsÞ2

225
� R

2

D
� LðjÞ;

LðjÞ ¼ j2=3� � arctanðj
2 � 1Þ1=2

ðj2 � 1Þ1=2
;

ð50Þ

where j ¼ a=b and R ¼ ð3v0=4pÞ1=3. Eq. (50) demon-
strates the dependence of the relaxation rate DR2 on the
object�s shape (when a volume of the object is fixed), in
this particular case, on the aspect ratio j ¼ a=b. This
dependence is described by the function LðjÞ, which is
plotted in Fig. 3.

The function LðjÞ has a maximum L ¼ 1 at j ¼ 1
(sphere, see Eq. (35)) and tends to 0 at j ! 0 and

j ! 1

LðjÞ ’ j2=3 ln 2j ; j � 1;
p

2j1=3
; j � 1:

�
ð51Þ

For the latter limits (formally, corresponding to an in-

finitely long cylinder and an infinite plane, respectively)

the long-time behavior of the signal, as mentioned
above, is not mono-exponential and cannot be described

by the relaxation rate DR2 (the ‘‘Coulomb’’ integral in
Eq. (4) diverges).
4. Discussion

In the short-time limit, the FID signal is shown to
have the universal t2 time dependence (characteristic of
the static dephasing regime) and depends on the objects�
geometry only through their volume fraction f. This
result is based on a surprising property of the system

containing uniformly distributed and uniformly oriented

magnetized objects: the correlation function Gð0Þ �
hx2i depends only on the objects� susceptibility and their
volume fraction f. The physical origin of such inde-
pendence on the objects� shape is rather simple: although
the symmetry of the magnetic field induced by each

particular object is determined by its specific geometry,

positional and orientational averaging ‘‘restore’’ the

spherical symmetry of the system as a whole (no pre-

ferred directions). The t2-behavior at short times is a
general feature of the FID signal in the static dephasing

regime [29]. For particular cases of spherical, cylindrical,
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and ellipsoidal objects, this behavior has been obtained
previously in [6,14,22]. It should be mentioned that in

[22], where the FID signal has been analyzed for ellip-

soids of revolution (spheroids) as the magnetized ob-

jects, the signal from the inner volume of the objects (the

internal dephasing function si) and from outside space

(the external dephasing function se) are given separately
1

and described in the short-time limit by Eq. (38) and

Eqs. (39)–(41) in Ref. [22], respectively. If we, however,
combine these two contributions to the total signal and

take into account the inequality f � 1, we obtain the t2-
time dependence of the FID signal with the coefficient

independent from a spheroid�s half-axes ratio in com-
plete agreement with the leading term in Eq. (28).

If the number of the objects is small or their positions

and/or orientations are not uniform, the global sym-

metry of the system is not spherical and Gð0Þ cannot be
described, in general, by a geometry-independent ex-

pression. Obviously, Eq. (4) is valid only for a small

volume fraction f. If f ! 1, we can consider the objects

as a new ‘‘media’’ and the media as new ‘‘objects’’ with

the volume fraction ð1� fÞ. In this case, the quantity
Gð0Þ will be proportional to ð1� fÞ. As proposed in [12],
the case of an arbitrary volume fraction can be described

by a simple polynomial interpolation f ! f � ð1� fÞ.
Such a modification should be done in Eq. (4) and all

other formulas containing the volume fraction f.
The SE signal decay in the short-time limit is mainly

caused by spins diffusing across the objects� surface. The
corresponding attenuation function is proportional to

ðD1=2 t5=2Þ with a coefficient depending on the objects�
surface-to-volume ratio. Note that the surface-to-vol-

ume ratio also appears in another problem, where the
role of spins located in the vicinity of boundaries is also

crucial, namely, in the theory of apparent diffusion co-

efficient in porous media [30]. In this theory, however,

spins are reflected from surfaces (or partially absorbed

by them) and diffusion is analyzed in the presence of a

constant field gradient.

In the motional narrowing regime the FID and SE

signals decay mono-exponentially with the relaxation
rate constants DR�

2 and DR2, respectively, Eq. (4), pro-
vided that the ‘‘Coulomb’’ integral in Eq. (4) exists. For

infinite cylinders, in the motional narrowing regime the

signal decays non-exponentially (see Eq. (42)).

If the magnetized objects can be characterized by a

single characteristic size R, the expression for the signal
can be represented in the form
1 In Ref. [22]. A.L. Sukstanskii and D.A. Yablonskiy, Theory of

FID NMR signal dephasing induced by mesoscopic magnetic field

inhomogeneities in biological systems, J. Magn. Reson. 151 (2001) 107

there is a misprint in Eq. (37) for the internal dephasing function si: an
erroneous factor expðipÞ should be substituted by expðip=3Þ. The
asymptotic expressions (38) are correct.
SðtÞ ¼ S0 exp½�CðtÞ�;

CðtÞ ¼ g � f � ðdxsÞ2 � t2D � F t
tD

� �
;

ð52Þ

where tD ¼ R2=D, the numerical coefficient g and the
function F ðsÞ depend on the shape of the objects (see,
e.g. Eqs. (32) and (33) and (39) and (40)). If we are in-
terested in the R-dependence of the signal attenuation
function for a fixed acquisition time t, it is convenient to
re-write Eq. (52) in the form

C ¼ g � f � ðdxs � tÞ2 � F ðsÞ; s ¼ t=tD ¼ Dt=R2; ð53Þ

where F ðsÞ ¼ F ðsÞ=s2. Using the general properties of
the function F ðsÞ, it can be readily shown that for small
characteristic sizes, R � ðDtÞ1=2, the function F tends to
zero as F � R2 (or F � R2j lnRj for infinitely long cyl-
inders). For large characteristic sizes, R � ðDtÞ1=2, the
function F becomes R-independent for the FID signal

and tends to zero as F � 1=R for the SE signal. Hence,
for the SE signal the attenuation function C as a func-
tion of R has a maximum at some characteristic size

R ¼ Rm ¼ ðDt=smÞ1=2, where sm is determined by the
equation F

0ðsmÞ ¼ 0. The value of this attenuation
function at this maximum is proportional to the volume

fraction and to the echo time squared, and inversely

proportional to the external field, Cmax � f � t2=H 2
0 � F max,

where F max ¼ F ðsmÞ (as well as sm) is determined only by
the objects� shape. As the echo time t increases, Cmax also
increases as t2 and its position on the R-axis shifts to
higher values: Rm � t1=2. These results are consistent
with the numerical calculations by Boxerman et al. (see

Fig. 7 in [5]).
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Appendix A. Correlation function G(t)

Consider a system consisting of a large number N ,
N � 1, of magnetized objects of magnetic susceptibility

vi embedded in a medium with another susceptibility ve.
In the presence of an external homogeneous magnetic
field H0, these objects create an additional inhomoge-

neous mesoscopic magnetic field dHðrÞ:

dHðrÞ ¼
XN
n¼1

hnðr� RnÞ: ðA:1Þ

Here hn is a contribution of the nth object located at the
point Rn. The local NMR frequency at the position r,



A.L. Sukstanskii, D.A. Yablonskiy / Journal of Magnetic Resonance 163 (2003) 236–247 245
xðrÞ, has contributions from all objects and is equal to
xðrÞ ¼ cHðrÞ, where c is the gyromagnetic ratio, HðrÞ is
the projection of the local nuclear magnetic field HðrÞ
onto the direction of the external field H0. In the Lo-

rentzian approximation (see, e.g. [31]), which is fairly

precise for isotropic liquids, HðrÞ ¼ H0ð1þ 4pve=3Þþ
dHðrÞ in the medium and HðrÞ ¼ H0ð1þ 4pvi=3Þþ
dHðrÞ inside the objects (we assume that the magnetic
susceptibilities vi;e are small enough to ignore effects
nonlinear in v). In what follows, the frequency

x0 ¼ cH0ð1þ 4pve=3Þ will be considered as the fre-

quency of the rotating frame, and all results will be

presented with respect to this reference frequency. In

fact, the system under consideration can be treated as a

system consisting of the magnetized objects with a rel-

ative susceptibility Dv ¼ vi � ve embedded in a non-
magnetic medium with v ¼ 0. The Lorentz field in this
approach differs from zero only within the objects and is

equal to 4pDvH0=3.
The correlation function GðtÞ (16) can be written in

the form

GðtÞ ¼ c2

V

Z Z
dr1 dr2P ðr1; r2; tÞ � eGGðr1; r2Þ

	 

orientation

;

ðA:2Þ

where

eGGðr1; r2Þ ¼
X
n;m

hðr1

*
� RnÞhðr2 � RmÞ

+
position

¼
XN
n

hðr1

*
� RnÞhðr2 � RnÞ

+
position

þ
X
n6¼m

hðr1

*
� RnÞhðr2 � RmÞ

+
position

; ðA:3Þ

where hðr� RnÞ is the projection of the local nuclear
magnetic field created by the nth object located at the
point Rn on the direction of the external field H0. Since

the object positions Rn are uniformly distributed over

the system volume V , position averaging of any function
of Rn means

hf ðRnÞiposition ¼
1

V

Z
dRn f ðRnÞ: ðA:4Þ

Note that Eq. (A.4) allows overlapping of the magne-

tized objects, so for real particles (which can not over-
lap) this is right only in dilute limit (small volume

fraction).

Averaging the non-diagonal terms in Eq. (A.3) gives

zero. Substituting the diagonal term of Eq. (A.3) in Eq.

(A.2) and using the fact that the propagator P ðr1; r2; tÞ is
a function of the difference ðr1 � r2Þ, the correlation
function GðtÞ takes the form
GðtÞ ¼ c2N
V

Z Z
dr1 dr2P ðr1; r2; tÞ � hðr1Þhðr2Þ

	 

orientation

;

ðA:5Þ

where hðrÞ is the field induced by one object located at
the coordinate origin.

Using the Fourier representation of the propagator

P ðr1; r2; tÞ,

~PP ðk; tÞ ¼
Z
drexpð�i kðr1 � r2ÞÞP ðr1; r2; tÞ

¼ expð�Dk2tÞ: ðA:6Þ

Eq. (A.5) can be re-written in the form

GðtÞ ¼ c2N
V

�
Z

dk

ð2pÞ3
expð

*
� Dk2tÞ ~hhðkÞ

��� ���2+
orientation

;

ðA:7Þ

where ~hhðkÞ is the Fourier transformation of hðrÞ.
The field hðrÞ induced by one object with the relative

susceptibility Dv ¼ vi � ve embedded in the non-mag-
netic medium can be found by solving the Laplace

equation for the magnetic potential U,

h ¼ �rU; r2U ¼ 4pdivM; ðA:8Þ

where M is the magnetization vector induced by the

external field H0 within the object. The magnetizationM
relates to the total magnetic field H within the object as

M ¼ Dv �H. Neglecting nonlinear in v terms, the field H
can be substituted by the external field H0,M ’ Dv �H0.

It is important to note that in this approximation the

magnetization M is uniform within the objects and

M ¼ 0 outside.
Solving Eq. (A.8) in the Fourier domain, we get

~hhðkÞ ¼ � 4pkðkMÞ
k2

� F ðkÞ

¼ � 4pDvkðkH0Þ
k2

� F ðkÞ; ðA:9Þ

where ~hhðkÞ is the Fourier transform of hðrÞ and F ðkÞ is
the form-factor of the object,

F ðkÞ ¼
Z
v0

drexpð�i krÞ: ðA:10Þ

The integral in Eq. (A.10) is over the volume of the

object. This integral can be readily evaluated for some

symmetric object�s geometries.
Sphere of radius R

F ðkÞ¼
Z
x2þy2þz26R2

drexpð�ikrÞ¼ 4p
k3

ðsinkR� kRcoskRÞ:

ðA:11Þ
Cylinder of radius R and height H (with symmetry

axis oriented along the Cartesian axis z)
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F ðkÞ ¼
Z
x2þy2 6R2

jzj6H=2

drexpð�i krÞ

¼ 4pR
k?kz

� J1ðk?RÞ � sin
kzH
2

� �
; ðA:12Þ

where k? ¼ jk?j, k? is the two-dimensional vector in the
basal plane of the cylinder ðXY Þ and J1 is the Bessel
function.

Ellipsoid with half-axes a, b, and c oriented along the
Cartesian axes x, y, z, respectively:

F ðkÞ ¼
Z

x2

a2
þy2

b2
þz2

c2
6 1

drexpð�ikrÞ ¼ 4pabc
q3

ðsin q� q cos qÞ;

q ¼ ½ðakxÞ2 þ ðbkyÞ2 þ ðckzÞ2�1=2: ðA:13Þ

To obtain the local nuclear magnetic field, we should

add the Lorentz field 4pDvH0=3. As this field is non-zero
only inside the object (where it is uniform), its Fourier-

transform is ð4pDvH0=3Þ � F ðkÞ. Hence, ~hhðkÞ takes the
form

~hhðkÞ ¼ 4pDvH0
1

3

�
� cos2 ak

�
F ðkÞ; ðA:14Þ

where ak is the angle between the vector k and the ex-

ternal field H0.

Substituting Eq. (A.14) in Eq. (A.7), the correlation

function GðtÞ takes the form

GðtÞ ¼ fðdxsÞ2

v0
�
Z

dk

ð2pÞ3
expð

*
� Dk2tÞ

� 1

3

�
� cos2 ak

�2
jF ðkÞj2

+
orientation

; ðA:15Þ

where dxs ¼ 4p � Dv � cH0 is the characteristic frequency
shift, f ¼ Nv0=V is the volume fraction occupied by the
objects, v0 is the volume of one object.
The final step is orientation averaging. For a uni-

form distribution of the objects� orientations, the an-
gular distribution function is the solid-angle weighting

factor, ðsin akÞ=2, 06 ak6 p. Integrating Eq. (A.15)

with such a distribution function, we obtain the corre-

lation function

GðtÞ ¼ G0
v0

�
Z

dk

ð2pÞ3
expð�Dk2tÞjF ðkÞj2; ðA:16Þ

where

G0 ¼ Gð0Þ ¼ 4fðdxsÞ2

45
: ðA:17Þ

Substituting Eq. (A.16) in Eqs. (17), we obtain the

function CðtÞ in the form

CðtÞ ¼ G0
v0

�
Z

dk

ð2pÞ3
gðDk2; tÞjF ðkÞj2; ðA:18Þ
where the function gðx; tÞ depends on the specific
structure of the RF pulse sequence: for FID and SE

signals these functions are

gFIDðx; tÞ ¼
1

x2
e�xtð þ xt � 1Þ;

gSEðx; tÞ ¼
1

x2
4e�xt=2
�

� e�xt þ xt � 3
�
:

ðA:19Þ

The expressions similar to Eqs. (A.18) and (A.19) have

been obtained by solving the Bloch–Torrey equation in

second order perturbation theory with respect to the
small parameter dxs � tD, for the particular case of infi-
nitely long cylinders in [7] and for objects of arbitrary

geometry in [12].

Coming back from the Fourier domain to the coor-

dinate domain, the correlation function takes a rather

simple and elegant form:

GðtÞ ¼ G0
v0

�
Z Z

v0

dr1 dr2P ðr1; r2; tÞ

¼ G0
v0ð4pDtÞ3=2

�
Z Z

v0

dr1 dr2 exp

"
� ðr1 � r2Þ2

4Dt

#
;

ðA:20Þ

where the integration is over a single object volume only.
Eqs. (A.16) and (A.20) are two alternative forms for

calculating GðtÞ. The first one is most convenient when
the form-factor F ðkÞ is available in a more or less simple
form (sphere, cylinder, ellipsoid, see Eqs. (A.11)–

(A.13)), whereas for less symmetric objects a direct

calculation of the integral in Eq. (A.20) is preferable: for

any arbitrary geometry this integral can be easily eval-

uated numerically. In addition, the r-domain expres-
sions are convenient for analyzing the asymptotic

behaviors of the correlation function and the signal in

the short- and long-time limits.
Appendix B. The correlation function G(t) in the short-
time limit

As t ! 0, the propagator P ðr1; r2; tÞ tends to its initial
value Pðr1; r2; 0Þ ¼ dðr1 � r2Þ and GðtÞ ! G0. To obtain
the next term in t in the short-time limit, when

t � R2=D, we introduce a new variable r ¼ r1 � r2 and
write down the integral in Eq. (18) in the form

GðtÞ ¼ G0
v0ð4pDtÞ3=2

�
Z
v0

dr1

Z
~vv0ðr1Þ

drexp

�
� r2

4Dt

�
; ðB:1Þ

where the inner integration is over the region ~vv0ðr1Þ de-
pending on the point r1. At t � R2=D only those r

contribute to the inner integral for which

jrj6 ðDtÞ1=2 � R. For each point r1 we can determine the
point nearest to r1 on the object�s surface (call it r01) and
introduce a local coordinate system ðx; y; zÞ with the
origin at r1 and the z-axis along the outward normal to
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the surface at the point r01 (we suppose that the object�s
surface is smooth enough that a tangential plane exists

for each surface points except for a countable set of

them). The inner integration over r in (B.1) can be made

in this local coordinate system, the region of integration

being restricted by the object�s surface. However, due to
the inequality t � R2=D and the exponentially decreas-
ing integrand with jrj, only the restrictions toward the
point r01 can be important: z6 h, where h ¼ jr1 � r01j. All
other integration limits can be expanded to infinity,

producing only exponentially small error of order

expð�R2=DtÞ. Hence, the correlation function can be
written as

GðtÞ ’ G0
v0ð4pDtÞ3=2

�
Z
v0

dr1

Z 1

�1

Z 1

�1
dx dy

Z h

�1
dz exp

��
� r2

4Dt

��
¼ G0

v0
�
Z
v0

dr1 1

"
� 1
2
~UU

h

2ðDtÞ1=2

 !#

¼ G0 � 1
"

� 1

2v0

Z
v0

dr1 ~UU
h

2ðDtÞ1=2

 !#
; ðB:2Þ

where ~UUðxÞ is the complementary error function, which
exponentially tends to 0 for x � 1. Therefore, only
points r1 located in the vicinity of the surface contribute

to the integral in Eq. (B.2). Hence,

GðtÞ ’ G0 � 1
"

� 1

2v0

I
s0

ds
Z 1

0

dh~UU
h

2ðDtÞ1=2

 !#

¼ G0 � 1
"

� s0
v0

Dt
p

� �1=2#
; ðB:3Þ

where s0 is the surface of the object. This is Eq. (27) in
the main body of the paper.
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